Trường TH&THCS Chính Nghĩa -Kim Động - Hưng Yên

Thursday, 16/01/2025 - 15:13|
Chào mừng bạn đến với cổng thông tin điện tử của Trường TH&THCS Chính Nghĩa

CÂU HỎI ÔN TẬP HÌNH HỌC 9 SỐ 1

CHỦ ĐỀ : GÓC NỘI TIẾP.

Bài 1: Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng:

a) MA.MB = MC.MD.

b) Tứ giác ABEC là hình thang cân.

c) Tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).

Bài 2: Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa của cung AB. Lấy điểm M thuộc cung BC và điểm N thuộc tia AM sao cho AN = BM. Kẻ dây CD song song với AM.

a) Chứng minh ΔACN = ΔBCM . b) Chứng minh ΔCMN vuông cân. c) Tứ giác ANCD là hình gì? Vì sao?

Bài 3: Cho ΔABC cân tại A nội tiếp đường tròn (O). M là một điểm bất kỳ thuộc cung nhỏ AC. Tia AM cắt BC tại N. Chứng minh rằng: a) AB2 = AM.AN b) ACM = ANC

Bài 4: Cho ΔABC có AD là tia phân giác trong của góc A. Qua D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.

a) Tứ giác AEDF là hình gì? Vì sao?

b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh: MN // EF.

Bài 5: Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A, (R > R'). Qua điểm B bất kỳ trên (O’) vẽ tiếp tuyến với (O’) cắt (O) tại hai điểm M và N, AB cắt (O) tại C. Chứng minh rằng:

a) MN OC b) AC

 

Bài tin liên quan
Chính phủ điện tử
Tin đọc nhiều
Liên kết website
Thống kê truy cập
Hôm nay : 13
Hôm qua : 15
Tháng 01 : 182
Năm 2025 : 182